Мини Диск.

Мини Диск.

Начало

Б. Я. Меерзон, А. Я. Щербаков

Мини-диск (MD) – один из последних форматов в эволюции дисковых носителей звуковой информации, разработанный фирмой Sony. ремьера минидиска состоялась в Японии осенью 1992г.

Он меньше обычных компакт-дисков (диаметр всего 64 мм), но при этом не уступает им в качестве и продолжительности звучания записанной на нем музыкальной программы.

Это достигается за счет сжатия (уплотнения) данных, о стратегии которого речь пойдет ниже. Малый размер MD обеспечивает быстрый доступ к данным в любой точке диска меньше чем за 1 с.

На рис. 1 изображен MD-плейер для проигрывания мини-дисков.

Формат мини-дисков предусматривает использование двух видов носителей – незаписываемых дисков типа CD и записываемых магнитооптических дисков (рис. 2). Последние дают возможность производить на них повторные записи, стирая программы, записанные ранее. Эта "реверсивность" записываемых мини-дисков делает их прямыми наследниками записей на магнитной ленте, незаменимыми при оперативной подготовке программ радиовещания и в других подобных случаях. Оба дисковых формата для защиты от механических повреждений помещены в картриджи. Общий вес такого пакета приблизительно около 18 г.

Незаписываемый мини-диск очень похож на CD. Он записывается заранее обычным для CD оптическим методом (с помощью лазера), тиражируется в заводских условиях  прессованием и предназначается только для воспроизведения. Из-за того что запись в этом формате производится со сжатием данных, записи на этих мини-дисках не совместимы с обычными CD.

Записываемый, или, точнее говоря, перезаписываемый диск в принципе не является новшеством. Это магнитооптический носитель, применявшийся и ранее в компьютерной технике (CD-MO). Но  магнитооптическая среда для мини-диска была усовершенствована, устройство записи стало намного проще, а сама запись требует меньшего потребления энергии.

Принцип записи на мини-диск

Существует несколько методов записи на перезаписываемые ("реверсивные") носители, но для мини-дисков выбран метод модуляции магнитного поля (MFM) как наиболее надежный и дающий возможность производить перезапись практически бесконечное количество (до 1 млн.) раз. Причем, при каждой новой записи старые данные автоматически стираются.

Суть этого метода состоит в том, что при разогреве ферромагнитных материалов выше определенной температуры, называемой точкой Кюри, кривая их магнитной восприимчивости резко стремится вверх и  увеличивается во много тысяч раз. Если разогреть такой материал в некоторой точке до температуры, несколько превышающей точку Кюри, и воздействовать на материал магнитным полем слишком  слабым, чтобы оставить след на холодных участках, то разогретая точка после ее охлаждения до температуры ниже точки Кюри сохранит намагниченность, т. е. ее магнитное состояние  зафиксируется.

Записываемый магнитооптический мини-диск формируется на подложке из поликарбоната, на котором между двумя слоями диэлектрика располагается  магнитооптический (рабочий) слой. Поверх этой конструкции наносятся отражающий алюминиевый слой, защитный слой и смазка из кремнийорганического соединения, по которой должна будет скользить магнитная головка. На рис. 3 изображено сечение диска.

Магнитооптический слой мини-диска представляет собой специальный сплав железа, тербия и кобальта (FeTbCo) с очень низкой коэрцитивностью – приблизительно 80  Эрстед (6,4 кA/м). Это важно для того, чтобы, несмотря на то что магнитная головка не касается непосредственно рабочей среды, величина намагничивающего поля оказалась бы достаточной и не потребовалось бы его увеличения, которое неизбежно повлекло бы за собой большее выделение тепла и повышение потребляемой мощности.      

Чтобы записать информацию на магнитооптический слой, необходимо воздействовать на него не только магнитным  полем головки записи, но и одновременно разогреть соответствующую точку носителя до температуры Кюри. Делается это с помощью луча лазера.

Для применяемого в мини-дисках в качестве носителя записи сплава FeTbCo  температура, соответствующая точке Кюри, примерно равна 185 C.

И это обоснованный выбор: ниже возникает зона, где появляется  опасность случайного повышения температуры при простом хранении записей до критической величины, когда возможно разрушение записи.

Более высокие температуры не годятся из-за естественного роста энергии, необходимой для разогрева. Поэтому в качестве материалов для рабочих слоев магнитооптических дисков используют сплавы редкоземельных элементов. Обратите внимание на то, что ошибочное стирание данных на мини-диске практически невозможно, так как для этого требуется одновременное воздействие определенной (выше точки Кюри) температуры и магнитного поля.

Итак, магнитооптические системы записи строятся достаточно примитивно.

Для этого магнитная головка позиционируется поверх лазерного источника на одной с ним оси с противоположной стороны диска (рис. 4). Сфокусированный луч лазера нагревает локальную область дискового носителя, на которую воздействует рассеянное магнитное поле головки записи довольно слабое, чтобы произвести запись на холодных участках. Однако его достаточно, чтобы при вращении диска в первые моменты остывания разогретого участка записать на нем информацию в виде намагниченности  определенной полярности: "север" – N или " юг"- S.

Таким образом, разные полярности намагниченности предварительно нагретых пятен в магнитооптическом слое соответствуют цифровым логическим уровням "1" и "0". Размер такого пятна с записью, а следовательно, и плотность записи на магнитоэлектрические диски определяются размером сфокусированного светового пятна лазера и продолжительностью цикла реверсирования модулирующего магнитного поля головки записи. Для этого была разработана специальная головка, которая допускает быстрое перемагничивание (приблизительно в течение 100 нс). Очевидно, что поверхностные слои диска не препятствуют мгновенному прогреванию рабочего слоя. Запись выполняется наложением новых записей на прежние с автоматическим уничтожением последних.

Считывание информации с дисков

Как уже было сказано, существует два типа дисков и для каждого из них применяется своя система считывания. Незаписываемый диск (MD-DA) подобен компакт-диску. Для его считывания используется тот же лазер, что и при записи, но на более низком энергетическом уровне. Отраженный лазерный луч изменяется по интенсивности в зависимости от информации, записанной в виде питов (углублений) на поверхности диска. На рис. 5 изображен процесс считывания информации с такого диска.

Записываемый диск  (MD-R) использует другую систему считывания, поскольку данные записаны не системой питов, а сохранены в виде изменяющейся от точки к точке полярности намагниченности магнитного слоя. В этом случае считывание информации также выполняется лазером.

Лазерный луч падает на дисковую поверхность, проходит через магнитный слой и затем отражается от отражающего слоя. Однако, проходя через магнитный слой, плоскость поляризации лазерного луча изменяется в зависимости от того, с какой полярностью этот слой в данной точке намагничен. Поворот вектора поляризации пучка света под влиянием магнитной среды, через которую он проходит, называется эффектом Керра.

На рис. 6 изображен принцип считывания информации с записываемого магнитооптического диска.

Итак, имеется два вида считывания мини-дисков:

Для считывания информации с дисков обоих типов используется один и тот же двухфункциональный лазер. Однако в оптическую головку системы добавляют (если сравнивать с CD) еще один элемент – поляризационный анализатор, так называемую призму Уолластона (Wollaston). Дело в том, что эффект Керра слаб.

Поворот вектора поляризации, даже в самых благоприятных условиях, не превышает одного градуса, и приемники света не реагируют на поляризацию.  Задача призмы Уолластона преобразовать угол поляризации в интенсивность света, который затем направляется на два фотодиода (рис. 7).

Призма Уолластона – это комбинация двух кварцевых резонаторов. Лазерный луч, отражаясь от отражающего слоя диска магнитооптического типа, проходит через этот кристалл и разделяется в нем на основной луч (такой же, как падающий) и его составляющие, побочные лучи. Последние (на рис. 7 они обозначены  I и J) непосредственно связаны с поляризацией падающего лазерного луча.

Причем, при прохождении лазерного луча через намагниченный N-слой на диске его поляризация окажется такова, что один из боковых лучей (луч J) будет больше другого. А если лазерный луч пройдет через S-слой на диске, его поляризация изменится и в этом случае луч I по величине окажется большим.

Итак, падающий луч оказывается разложенным на два составляющих его луча  I и J, соотношение их величин определяется углом Керра или направлением поляризации.

 В том случае, если мы имеем дело с незаписываемым диском типа CD, лазерный луч не подвергается воздействию магнитного слоя, никаких изменений в его поляризации не происходит и поэтому лучи I и J будут равны по уровню.

Далее считанная информация поступает на блок датчика мини-диска (рис. 8), который подобен блоку датчика CD-плейера, но содержит дополнительные датчики.

В случае считывания незаписываемого диска на выходе датчиков I и J появляются лучи, одинаковые по величине.  Далее они поступают на фотодатчики и преобразуются в электрические ВЧ-сигналы. На выходе системы RF-1 после вычитания сигналы взаимно уничтожаются. На выходе же RF-2  сигналы I и J суммируются и создают сигнал, подобный ВЧ-сигналу на выходе обычного плейера  CD.

В случае записываемого диска сигналы I и J различны по величине. На выходе RF-1 образуется  разностный сигнал, полярность которого содержит информацию о данных на диске.

Остальные сигналы с датчиков A, B, C, D – сигнал ошибки фокусировки (A+ C)-(B+D), сигнал автоматической регулировки усиления AGC (A+B)+(C+D), а также сигнал отслеживания лазерного луча (Tracking) с датчиков E и F (E-F), подобны тем, которые используются  в плейерах CD. За исключением сигнала ADIP (Adress in pregroove), несущего информацию адресации и представляющего собой сигнал  (A+D)-(B+C).

ADIP

Записываемый мини-диск до записи не заполнен, т. е. не содержит никакой информации. Однако если бы он не имел предварительной разметки, было бы невозможно производить правильное позиционирование луча лазера как при записи, так при считывании информации.

Поэтому каждый MD-R, аналогично CD-R, имеет U-образную физическую канавку, или предканавку адресов  (ADIP), которая штампуется на диске при его производстве. Предканавка располагается за спиральной дорожкой данных и имеет специальную конфигурацию (рис. 9), содержащую  двухфазный сигнал с основной частотой  22,05 кГц, промодулированный частотами 21,05 и 23,05 кГц.

Разумеется, на всех дисках предканавка совершенно одинаковая. Без ADIP было бы невозможно осуществить правильное позиционирование для любой системы считывания. Поэтому ADIP – нестираемая возможность адресования.

Считывание ADIP подобно считыванию CD, так как лазерный луч в одни моменты времени падает на поверхность диска, а в другие – попадает на углубление, что приводит к модуляции ВЧ. Считывая ADIP-информацию с датчиков A, B, C и D после демодуляции сигнала, получается таблица адресования, которая определяет для каждой позиции на диске свой точный адрес. Тот же самый адрес будет использоваться при новой записи данных.

Схема расположения дорожек

На незаписываемом  диске расположение дорожек  аналогично компакт-дискам: зона, содержащая оглавление диска (TOC – Table of contens), программная зона  и оконечная зона. Что касается записываемых дисков, то у них, кроме начальной зоны, содержащей TOС, есть еще зона UTOC – оглавление пользователя, где последний записывает начальные и конечные адреса музыкальных дорожек.

Таким образом, мини-диск предоставляет возможность изменять номера дорожек, делить дорожку на части и т. д. Все это осуществляется именно в области UTOC. Например, если пользователь хочет разделить одну дорожку на две, в программной зоне музыкальные данные остаются нетронутыми, но адреса и оглавление в зоне UTOC будут изменены.

На рис. 10  изображено расположение дорожек на диске.

Формат данных

Формат данных мини-диска (рис. 11) подобен формату CD, но с частичным использованием формата CD-ROM.

Во-первых, при кодировании применяется известный по CD помехозащищенный код, так называемый каскадный код с перемежением CIRC (Cross interleave Read – Solomon code). Но здесь этот код модернизирован, имеет большее количество чередований и получил поэтому новое наименование – ACIRC.

Во-вторых, используется кластерный формат. Каждый кластер содержит 36 секторов: из них 32 сектора данных и четыре сектора связи (рис. 12). Формат сектора такой же, как в CD-ROM . Содержание секторов связи зависит от типа диска. В незаписываемом диске четыре сектора связи – это фиксированные секторы субданных, которые могут использоваться для информации на диске, графики и т.п.

Применение секторов связи необходимо и в случае записываемого диска. Кластер – это самый маленький записываемый блок. Очевидно, что между любыми двумя из записываемых блоков должна быть буферная зона, чтобы избежать случайной перезаписи с блока на блок.

Первые три сектора каждого кластера используются как связь, четвертый –  сектор  субданных. Это означает, что объем субданных записываемого диска составляет только четверть такового на незаписываемом диске. Однако надо иметь в виду, что субданные – это данные избыточные. На рис. 13 изображен кластерный формат.

Каждый сектор содержит 2352 байта, из которых 2332 байта данных, а первые 20 байтов принадлежат синхронизации, режиму и разделению. Далее следуют звуковые группы; каждая из них имеет 424 байта, из которых 212 байтов музыкальных данных левого канала и 212 байтов – правого канала. Сектор содержит 5,5 звуковых групп, т. е. пять полных групп и одна половина с данными только левого или только правого канала. Соответствующие канальные байты разместятся затем в следующей звуковой группе.


Журнал Install-pro

Сайт управляется системой uCoz